Получение крупных стальных отливок по газифицируемым моделям с использованием наливной формовки

Рассмотрены перспективные возможности применения ЛГМ-процесса в литейных формах из жидкоподвижных самотвердеющих смесей

Литье по газифицируемым моделям (ЛГМ) из пенополистирола по точности и качеству отливок, условиям труда и экологической безопасности может быть отнесено к высоким технологиям литейного производства. Эта технология хоть и перешагнула свой 50-ти летний "стаж" с даты первого изобретения Г. Шроера [1], сохраняет динамичные показатели по распространению в литейном производстве стран мира. Изобретение А. Чудновского [2] положило начало работ по ЛГМ в СССР, позволив считать отечественных литейщиков одними из соавторов этого технологического процесса, причем заметный вклад и активные работы до настоящего времени по его совершенствованию связаны с научным коллективом ФТИМС НАНУ, г. Киев, Украина.

Рис.1. Модели желоба из пенополистирола

Сегодня наиболее широко ЛГМ-процесс применим с вакуумированием формы из сухого песка без связующего, когда одноразовую пенополистироловую модель газифицируют (замещают) заливаемым металлом, а внутриформенное разрежение (на уровне 50 кПа) создает направленный газоотвод. Однако также в виде одного из первых вариантов этой технологии для производства крупных и тяжелых отливок по таким моделям все шире используют формовочные песчаные смеси со связующим ("Full Mold Process"). Среди таких смесей наиболее подходящими оказались жидкоподвижные самотвердеющие смеси (ЖСС), не требующие динамического уплотнения, что важно по причине невысокой прочности материала и легкой деформируемости модели (плотностью 25 кг/м3) под действием внешних нагрузок, которые во время формовки обычно не должны превышать 1 кг/см2.
Такие методы формовки, как встряхивание, прессование, формовка пескометом и др., неприемлемы для производства отливок по моделям из пенополистирола. Даже формовку ручными простыми и пневматическими трамбовками нужно выполнять очень осторожно, чтобы не повредить модель, что делает такие методы нежелательными для серийного производства. Лучше всего применимы сыпучие или жидкоподвижные самотвердеющие смеси, не требующие дополнительного уплотнения, или для уплотнения которых достаточно вибрации. Песчано-глинистая формовочная смесь не обладает всеми указанными свойствами, поэтому ее редко применяют для данного метода литья.

ЖСС впервые были получены одновременно российскими и украинскими литейщиками [3]. Технологии ЖСС и ЛГМ почти "ровесники", обе по яркости неординарных технических решений заслуживают на вхождение в первую пятерку рейтинга замечательных литейных технологий прошлого века, если такой будет составлен. Мы вправе гордиться значительным вкладом отечественных ученых в создание ряда разновидностей этих технологий.

Рис. 2. Отливка желоба из стали.

Совместное применение ЖСС и ЛГМ усложняет процесс литья путем "наложения" факторов, свойственных обеим технологиям, создавая ряд особенных обстоятельств, которые, в частности, газовый режим литейной формы, предполагают выяснение технологом-литейщиком закономерностей многофакторных взаимозависимых составляющих физико-химических, газо- и гидродинамических процессов с целью обеспечения стабильного качества получаемых отливок. При изготовлении отливок в формах со связующим собственный газовый режим литейной формы (будь она полой) дополняется мощным источником газовыделения (с подвижным фронтом) в виде продуктов газификации пенополистирола модели теплом заливаемого металла. Причем этот дополнительный источник газов может многократно превышать поток газов от формовочного материала.

В этой связи весьма важное качественное решение проблемы создания направленного вывода газов из полости формы во время деструкции модели в форме со связующим при одновременном дожигании этих газов до экологически безопасного уровня выполнено в соответствии с изобретением [4], позволяющим сообщить газовыводные каналы, выходящие на контрлад литейной формы, с пространством между моделью и зеркалом заливаемого металла. Рассмотрим c точки зрения оптимизации газового режима литейной формы предпосылки и результаты начального этапа работ по совместному использованию указанных технологий в производственных условиях Киевского завода "Большевик", являющимся одним из первых заводов, на которых применены ЖСС [3].

К началу проведения работ техническое обследование уровня состояния технологии формовки из ЖСС в сталелитейном цехе завода показало, что литейные формы подвергаются подсушке в сушиле или переносной горелкой, которая изначально не предусмотрена технологической инструкцией и понижает эффективность технологии ЖСС, внося дополнительные энерго- и трудозатраты. Причина подсушки - повышенные влажность и газотворность в сочетании с пониженной газопроницаемостью затвердевшей смеси, повышающие вероятность "кипения" литейных форм при заливке металлом, а также низкая прочность смеси. В свою очередь повышение влажности вызвано передозировкой жидкой композиции для увеличения текучести и прочности смеси на выходе смесителя, а неполное химическое отверждение смеси из мелкого песка с долей фракции 016 до 20% понижает прочность и газопроницаемость. Дозирование вручную большинства компонентов при приготовлении смеси вызвано изношенностью оборудования (эксплуатируется свыше 40 лет), в частности системы автоматического дозирования смесителя, в результате чего пониженная живучесть формовочной смеси составляет 3,5-4 мин., что с учетом ее доставки бадьей, перемещаемой краном, не позволяет свободно залить смесью опоку, так как смесь теряет жидкоподвижность и частично "зависает" на стенках бадьи.

Рис. 3. Стальная отливка вала мешалки смесителя.

С учетом указанных отклонений от типового процесса ЖСС в условиях указанного завода решили первую опытную заливку при получении отливки желоба из углеродистой стали Ст35 массой около 2 т выполнить в форму, изготовленную по СО2-процессу, поскольку такие смеси имеют невысокую влажность на уровне 4-5%. Процесс заливки и изготовленная отливка убедительно показали возможность получения таких отливок в песчаных формах с жидкостекольным связующим. На рис. 1 показаны пенополистроловые модели желоба, а на рис. 2 - вариант отливки желоба в форме по СО2-процессу. Полученная отливка сразу после извлечения из формы практически не имеет пригара и нуждается лишь в зачистке абразивным кругом, а контактирующие слои смеси не требуют значительных усилий для их отслоения, и их остатки легко удаляются особенно после термообработки отливки.
Затем из этой же стали получили экспериментальную отливку массой свыше 200 кг типа вала мешалки смесителя (рис. 3), заформовав ее модель из пенополистирола по технологии ЖСС по действующей на заводе технологической инструкцией для процесса формовки. Отливка также, как и первая, получилась удовлетворительного качества по поверхности, а также без признаков "кипения" при заливке и без наличия усадочных дефектов, наблюдаемых после отрезки прибыли. Лишь вблизи питателя имелись места повышенной шероховатости поверхности и наплывы толщиной до 1мм на участке размерами не более 40х60 мм, что легко устраняется очистными операциями, а в дальнейшем их предотвращение требует двойной окраски этих мест на модели или применением краски с компонентами повышенной огнеупорности.

Рис. 4. Процесс заливки без выделений дыма

Процесс заливки (рис. 4) формы при получении по способу [4] отливки (рис. 3) показал, что газы от модели, выходя по каналам через выпор на контрлад формы, сразу воспламеняются и полностью сгорают без образования дыма, формируя факел, который при выполнении каналов направляют под углом в сторону от литниковой воронки. На рис. 4 видно, горение такого факела под заливочным ковшом и отсутствие дыма, в отличие от ранее применяемого вывода газов через боковые стенки формы по традиционной технологии с типичным обильным выделением дыма, что недопустимо по санитарным нормам и часто служило основным препятствием широкому внедрению ЛГМ в формы из ЖСС. Подобное выделением дыма без горения газов один из авторов наблюдал на Горьковском автозаводе в 80-х годах при литье крупных кузовных штампов способом ЛГМ, когда после заливки цех в течение часа проветривали, прервав работу. Форма отливки вала мешалки в пяти опоках сразу после заливки показана на рис. 5.

Получение двух указанных отливок показало возможность дальнейшего расширения номенклатуры и объемов крупного литья, а также необходимость восстановления технологии ЖСС без подсушки форм, которая нежелательна при ЛГМ-процессе по причине коробления модели и образования "смолистых" остатков на стенках полости формы от местной деструкции модели. В связи с этим после решения проблемы удаления газообразных продуктов деструкции модели из полости формы для достижения стабильного качества отливок без наиболее характерных в этом случае "вскипов" формы необходимо обеспечение требуемого газового режима самой формы из ЖСС, состоящего в достижении своеобразного оптимального газодинамического баланса, когда ее газопроницаемости достаточно для нивелирования влияния газотворности. При этом следует учесть вероятность попадания продуктов деструкции одноразовых пенополистироловых моделей в поры формовочной смеси качестве дополнительного источника газов. С целью уяснения механизмов и обстоятельств достижения позитивного газового баланса формы рассмотрим основные технологические принципы получения ЖСС и взаимозависимые характеристики смеси, используя данные монографии [3].

Рис. 5. Залитая форма вала мешалки смесителя.

Физическую модель ЖСС можно представить в идеальном случае как зерна песчинок, окруженные пеной, которая раздвигает их до объемной массы смеси (1,1-1,3)*103 кг/м3 и служит такой своеобразной смазкой, что песчаная смесь приобретает жидкоподвижность. По истечении 10-15 мин. после замешивания формовочной смеси пена опадает, формовочная смесь теряет текучесть. Регулируют указанную устойчивость пены свойствами пенообразователя - промышленного ПАВ, специально подобранного и введенного в жидкую композицию при замешивании формовочной смеси.

Явление разрушения пен, которое определяет продолжительность текучести (живучести) смеси, в основном вызвано истечением междупленочной жидкости из так называемых каналов Плато-Гиббса (по именам двух первых исследователей пен), разделяющих воздушные оболочки пузырьков и носит название синерезиса. В пене происходит также диффузионный перенос газа за счет разности давлений в пузырьках разных размеров, т.к. пузырьки в пене имеют разную дисперсность. Этот процесс способствует увеличению или уменьшению размеров воздушных пузырьков, изменяя гранулометрический состав пены (обычно в пределах 0,2-0,4 мм). Также в пене происходит коалесценция из-за разрушения разделяющих пузырьки пленок жидкости при достижении ими некоторой критической толщины, чему способствуют истечение жидкости из пены и диффузия газа. При наличии пены газопроницаемость смеси близка к нулю, поэтому важно обеспечить не только достаточную продолжительность устойчивости пены для поддержания текучести смеси, но и указанный срок опадения пены.

Наилучшие технологические свойства дает применение песков групп К0315 и К020. С увеличением дисперсности песка снижается текучесть и газопроницаемость, хорошие результаты получены для речного песка с округлой формой зерен, хуже для угловатого, содержащего пыль и рассредоточенную структуру. Глинистая составляющая рекомендуется до 2%, что позволяет достичь ЖСС с технологически допустимой влажностью не более 4,5-5,5%, определяющей допустимый уровень газотворности. При содержании влаги в смеси более 5% и отношении обливаемой металлом поверхности стержня (или аналогичного участка формы без стержней, что свойственно ЛГМ-процессу) к площади его поперечного сечения больше 9, смесь при заливке металлом утрачивает газопроницаемость. В этом случае повышение газового давления часто приводит к "кипению" металла, которое предотвращают мерами дополнительной вентиляции таких участков формы, в частности, выполнением газоотводящих каналов (наколов).

Количество феррохромового шлака - отвердителя жидкого стекла (связующего формовочной смеси) подбирается таким (обычно 3-5%), чтобы твердение смеси происходило за 50-60 мин. Для ЛГМ-процесса допустим несколько больший срок твердения смеси, чем для литья по деревянных многоразовых моделях (поскольку отсутствует операция извлечения модели), что позволяет экономить до 20% этого материала. Такое уменьшение доли шлака как высокодисперсной составляющей повышает пенообразующую способность жидкой композиции и газопроницаемость смеси.

Признаком оптимального результата твердения смеси является равномерная высокая прочность и хрупкость смеси в объеме, что можно определить даже по раздавливанию пальцами комочка смеси. Этому виду смеси характерна повышенная хрупкость из-за недостаточной ударной вязкости. Но когда комок смеси имеет хрупкую корку (подсушенную на воздухе) и более податливую сердцевину, это первый признак неполного завершения химического твердения, что даст негативный газовый баланс свойств смеси. Последнее объясняется тем, что при твердении в результате гелеобразования жидкое стекло усаживается до 5% и выше. Его пленки между песчинками натягиваются и утоняются, вызывая рост газопроницаемости смеси в 2-3 раза параллельно с прочностью в течение 1-24 часов, чему способствует проникновение углекислоты из воздуха (как отвердителя жидкого стекла) в расширяющиеся поры смеси. Усадке смеси способствует возрастание количества шлака, а снижение температуры песка до 3-5°С в холодное время года резко снижает скорость восстановления газопроницаемости параллельно с твердением, что часто требует применения тепловой подсушки форм.

Подчеркнем также ряд других важных технологических мер применения ЖСС. Чтобы избежать ухудшения выбиваемости из-за высокой прочности и снижения газопроницаемости формы, содержание жидкого стекла в смеси не должно быть выше 6%. Поэтому иногда на практике применяемый вариант повышения текучести смеси путем увеличения дозировки жидкой композиции без уменьшения в ней доли жидкого стекла неприемлем. Также снижает прочность смеси уменьшение зерен песка благодаря увеличению водопоглощения, но еще большее снижение прочности дает добавка глины.

Важным вопросом при формовке является фиксирование пенополистирольной модели в ЖСС, поскольку модель очень легкая и смесь выталкивает ее на поверхность (модель всплывает). Во избежание этого рекомендуется сначала заливать смесь на 20-25% высоты опоки, а затем погружать в нее модель, формируя отпечаток низа модели, и выдерживать ее 15-20 мин. В этот период можно подготовить или установить литниковую систему, после чего опоку полностью заливают смесью. За указанное время смесь теряет жидкоподвижность и фиксирует модель. Нужно иметь в виду, что для крупных склеенных моделей при закреплении их низа архимедова сила в верхних текучих слоях формы может быть столь значительна, что может покоробить или по склейке разорвать модель, и после заполнения наливной смесью до верха опоки разрыв или трещину можно не заметить. Во избежание этого следует оклеивать тонкие места пластиковой лентой, применять крепления деталей модели повышенной надежности, вводить дополнительные рамки или стяжки.
Применение газифицируемых моделей в формах с ЖСС открывает большие возможности повышения точности отливок, устраняя разъем формы со свойственными ему зазорами, уклонами и перекосами. Так как ЖСС наливается на модель и уплотняется под действием собственной массы, исключается опасность деформации и повреждения пенопластовой модели. Значительно сокращаются при этом затраты на оснастку. А применение модельно-макетных станков с ЧПУ для вырезания моделей из блочного пенополистирола позволяет свести изготовление моделей до нескольких часов без какой-либо оснастки. Управление такими станками, количество типов и моделей которых сегодня постоянно растет при снижении их стоимости, обычно осуществляется через USB порт с обычного персонального компьютера в среде Windows.

Таким образом, рассмотрены перспективные возможности применения ЛГМ-процесса в формах из ЖСС при получении крупных отливок, основное препятствие распространения которого составляет с технологической точки зрения напряженный газовый режим формы. Показано на основе новых технических решений и на примерах получения стальных отливок возможность его регулирования с обеспечением требуемого качества литейной продукции и безопасных условий труда. Также выявлена потребность в модернизации установок ЖСС на современном техническом уровне, в частности, выпущенных отечественным литейным машиностроением в 60-80-х годах прошлого века, что позволит расширить совместное применение указанных отечественных технологий литья.

Использованная литература:

1. Shroyer H.F. Gibverfahren unter verwendung eines ohne merliche Ruckstande verbrennbaren Models. Патент ФРГ, кл 31.с, 8/07 (В 22d). № 1108861, заявл. 1958 , опубл. 1962.
2. Авторское свидетельство 136014, СССР, МПК В22С 9/04, заявл. 1960, опубл. 1961.
3. Дорошенко С. П., Ващенко К.И. Наливная формовка. К: Вища школа. 1980. 176 с.
4. Патент Украины 67906 В22С 9/04, заявл. 2003, опубл. 2004.


Пресс-релизы

В канун Всемирного дня памяти жертв дтп в Новосибирске пройдет специальная акция «Живая статистика»

В канун Всемирного дня памяти жертв дтп в Новосибирске пройдет специальная акция «Живая статистика»

17 ноября в 12 часов на пл. им. Ленина (тротуарная часть перед большой скульптурной композицией) общественная организация «Форпост» и Госавтоинспекция Новосибирской области проведут акцию «Живая статистика». Цель проекта – привлечение внимания жителей Новосибирской области к проблеме гибели и травм...

«СибЭкоПром»: «Балтика» инвестирует 19 миллионов рублей в раздельный сбор

«СибЭкоПром»: «Балтика» инвестирует 19 миллионов рублей в раздельный сбор

15 ноября – Всемирный день вторичной переработки, цель которого привлечь внимание к проблемам обращения с отходами.

7-а Міжнародна Конференція та Виставка Сонячної Енергетики в Центральній та Східній Європі CISOLAR-2018 KYIV

7-а Міжнародна Конференція та Виставка Сонячної Енергетики в Центральній та Східній Європі CISOLAR-2018 KYIV

З 11 по 13 квітня 2018 р. у виставковому центрі «АККО Інтернешнл» (Київ) пройде наймасштабніший у регіоні галузевий бізнес-захід, присвячений індустрії сонячної енергетики – 7-а Міжнародна Конференція та Виставка Сонячної Енергетики в Центральній та Східній Європі CISOLAR-2018 KYIV.

Квартал «Парк Легенд» будет полностью энергонезависим

Квартал «Парк Легенд» будет полностью энергонезависим

Собственный автономный источник тепла и электроэнергии получит новый спортивно-развлекательный квартал «Парк Легенд», строящийся в центре Москвы на месте бывшего завода имени Лихачева (ЗИЛ).

Бизнес Новосибирска заявил о необходимости развития инфраструктуры по обращению с отходами упаковки

Бизнес Новосибирска заявил о необходимости развития инфраструктуры по обращению с отходами упаковки

Производители стеклянной тары и пивовары объединили усилия для создания предсказуемого и логичного регулирования рынка упаковки

Эксперты Schüco предупреждают: мошенники не дремлют

Эксперты Schüco предупреждают: мошенники не дремлют

«Безопасность – это не только прочные запоры и решётки на окнах, но и уверенность в сознательном выборе качественного продукта», – считает Станислав Французов, специалист Schüco, ведущего европейского производителя ПВХ-профиля и фурнитуры.

Первые и последние: безопасность превыше всего

Первые и последние: безопасность превыше всего

Жить на нижних и верхних этажах не так уж и плохо, но иногда грозит неприятностями.

все пресс-релизы

ДРУГИЕ статьи

Рынок противопожарного оборудования: что нового?

Рынок оборудования противопожарной безопасности в России начал активно развиваться сравнительно недавно. Еще десять лет назад, по оценкам ряда независимых экспертов, его объем не превышал 50 млн. USD. Однако благодаря экспоненциальному росту отечественной экономики за последние годы сегмент заметно...

АЗОТНЫЙ ПОТЕНЦИАЛ

Азотирование поверхности деталей машин и инструмента сегодня является одним из эффективных и распространенных методов упрочнения в различных отраслях машиностроения. Технологический процесс сам по себе хорошо известен. Известны его достоинства и недостатки. Самым большим недостатком традиционной тех...

Как организовать предприятие общественного питания?

Предприятия общепита выполняют как производственные, так и торговые функции. Используемое сырье и готовые изделия должны строго соответствовать санитарным нормам, иметь эстетичный вид, а также обладать высокими вкусовыми свойствами

Жизнь в металле

Отечественная строительная индустрия в плане использования материалов для возведения зданий до последнего времени оставалась достаточно консервативной отраслью. В основе подавляющего большинства строительных технологий для этих целей традиционно применялись проверенные временем дерево, кирпич и бето...

Обязательная утилизация попутного газа в России: тема знакомая, но не полностью понятная

По некоторым оценкам, в настоящее время доля России в сжигании на факелах попутного нефтяного газа (ПНГ) составляет 25‑30 % при общем мировом годовом объёме сжигаемого ПНГ около 150 млрд. м3, и Россия является мировым лидером по сжиганию ПНГ

Торцовые уплотнения

Общие сведения о торцовых уплотнениях

Повышение цен на тепло компенсирует счетчик

В начале года в большинстве регионов страны выросли тарифы на отопление в среднем на 12,2%. При этом в Москве рост составил более 24%, на Урале - 20%, в Санкт-Петербурге - 14%. Однако это не означает, что всем придется платить больше. Жильцы домов с теплосчетчиками могут и не заметить роста тарифов

все документы

Популярные объявления